Linearised $\mathrm{N}=2$ superfield supergravity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 15163
(http://iopscience.iop.org/0305-4470/15/1/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:52

Please note that terms and conditions apply.

Linearised $\boldsymbol{N}=\mathbf{2}$ superfield supergravity

V O Rivelles \dagger and J G Taylor
Department of Mathematics, King's College, London, UK

Received 27 April 1981, in final form 9 July 1981

Abstract

We present a formulation of linearised $N=2$ supergravity in superfield form by solving linearised torsion constraints in superspace and identifying the irreducible representations generated by them with the multiplets which constitute the minimal $N=2$ supergravity. After building the linearised Lagrangians for $N=1$ supergravity (minimal and non-minimal) from the respective irreducible representations, we construct an unconstrained linearised superfield Lagrangian for the $N=2$ case.

1. Introduction

One of the outstanding problems in extended supergravity is that of obtaining an extended superfield formulation of the cases with an internal $\mathrm{SO}(N)$ symmetry for $N \geqslant 2$. Such a formalism should allow the manipulation of both physical and auxiliary field variables, and might even aid in the discovery of the latter for $N \geqslant 3$. Furthermore, ultraviolet divergence cancellations discovered in low orders for $N \leqslant 8$ should become more transparent in an extended superfield language.

A complete geometrical superfield formulation of $N=1$ supergravity has already been presented by various authors (Siegel and Gates 1979, Bedding et al 1979) and its quantum features analysed (Siegel 1979, Namazie and Storey 1979, Taylor 1979, Grisaru and Siegel 1981). The complete off-shell component structure for $N=2$ has recently been given (de Wit et al 1980a, b) and a constrained superfield Lagrangian constructed (Sokatchev 1980). In order to develop a better understanding of the $N=2$ case before proceeding to higher N, we will analyse here the construction of an extended superfield framework for $N=2$ supergravity at the linearised level. This will involve describing appropriate techniques for classifying irreducible multiplets in a concise fashion, for writing down the corresponding Lagrangian, and for solving appropriate linearised torsion constraints (Castellani et al 1980, Stelle and West 1978, Wess 1979).

We start by developing our notation and applying it to the case $N=1$. We especially consider the procedure of field redefinitions required to achieve the linearised Poincaré supergravity Lagrangian which selects certain irreps for both the minimal and nonminimal formulation. We then discuss the same features for $N=2$, giving the field redefinitions producing the minimal auxiliary fields (de Wit and van Holten 1979) required for a linearised Poincaré Lagrangian to exist. In § 4 we solve linearised torsion constraints of algebraic form expected to be valid for higher N, and extend these to
\dagger Permanent address: Universidade Federal da Paraíba, Departamento de Física, João Pessoa, 58000 PB, Brazil.
differential torsion constraints specialised to extract the $N=2$ Weyl and auxiliary multiplets. We then present a linearised superfield Lagrangian incorporating these irreps. Finally we make some remarks on the extension of the above work to higher N.

2. Superfield irreps for $\boldsymbol{N}=1$ supergravity

In order to describe the strategy we propose to adopt for higher N, let us first consider the construction of a linearised superfield version of the simplest case of $N=1$ supergravity. To do that we use the fact that the known Poincare spin content of an off-mass-shell massive irreducible representation (irrep) with superspin Y of the $N=1$ super-symmetry algebra is (Salam and Strathdee 1975) ($\left.Y-\frac{1}{2}, Y^{2}, Y+\frac{1}{2}\right)$ (or $\left(0^{2}, \frac{1}{2}\right)$ when $Y=0$). The irrep containing maximal spin 2 has therefore the value $Y=\frac{3}{2}$, with component fields $A_{a}, \psi_{a \alpha}, h_{a b}$ where $\partial_{a} A_{a}=\partial_{a} \psi_{a \alpha}=\partial_{a} h_{a b}=h_{[a b]}=h_{a a}=\left(\gamma_{a}\right)_{a}^{\beta} \psi_{a \beta}=0$ and $\psi_{a \alpha}$ is Majorana. This Weyl multiplet can have a superfield representation on superfields Φ_{j} with external Poincaré $\operatorname{spin} j$ provided $j=2, \frac{3}{2}$ or 1 . The value $j=1$ may be selected by one of various criteria. The most general arises from the fully nonlinear supergeometric approach to $N=1$ supergravity (Siegel and Gates 1979 , Bedding et al 1979). The most specific, and more appropriate for our linearised approach to higher N superfield supergravities, makes use of torsion constraints which reduce the superachtbein $E_{A}{ }^{M}$ and super-connection $\Phi_{A B}{ }^{C}$ to the covariant derivatives of a vector and lower external spin superfields.

On such a superfield we may easily extract the $Y=\frac{3}{2}$ irrep by means of the appropriate projection operator. The result is made most transparent by use of the basis functions of the $Y=0$ and $Y=\frac{1}{2}$ irreps on a scalar superfield. These are the eigenfunctions of $A=-(4 \square)^{-1}(\bar{D} D)^{2}$ with eigenvalues $A=1$ and 0 respectively, where D_{α} is the flat superspace covariant derivative of Salam and Strathdee and $\square=\partial_{a} \dot{\partial}_{a}$. Since $A^{2}=A$ we may construct the basis functions for $Y=0$ and $\frac{1}{2}$ as $A \pi D_{\alpha}$ and ($1-A$) πD_{α}, where πD_{α} are the 16 possible independent products of D_{α} with itself. When $A=1$ the representations are still reducible and we split them with $G=$ $-\bar{D} \partial \gamma_{5} D$. Since $G^{2}=4 P^{4} A$ the eigenvalues are $G= \pm 2 P^{2}$ and the basis functions in this sector are $(1 \mp G / 2 \square) \pi D_{\alpha}$. By use of the identities for products of D_{α} 's (Sokatchev 1975) we can show that these functions reduce to the sets

$$
\left(\begin{array}{c}
e_{0} \tag{11}\\
u_{\alpha} \\
\omega_{a}
\end{array}\right) \equiv\left(\begin{array}{c}
2(1-A) \rrbracket \\
-4 \square^{-1}(1-A)(\mathrm{i} \partial D)_{\alpha} \square \\
\square^{-1}(1-A) \bar{D} \mathrm{i} \gamma_{a} \gamma_{5} D \mathbb{D}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
e_{ \pm} \tag{2}\\
u_{\alpha \pm} \\
\omega_{ \pm}
\end{array}\right)=\left(\begin{array}{c}
-\square^{-1} \bar{D} D_{\mp} \bar{D} D_{ \pm} \mathbb{Z} \\
-2 \square^{-1} \bar{D} D_{\mp} D_{\alpha \pm} \mathbb{V} \\
\square^{-1} \bar{D} D_{\mp} \bar{B}
\end{array}\right)
$$

when $A=0,1$ respectively. Our conventions and notation are $\eta_{a b}=$ $\operatorname{diag}(1,-1,-1,-1), \varepsilon_{0123}=-1, \gamma_{5}=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$ and $\bar{D} D_{ \pm}=\bar{D}_{ \pm} D_{ \pm}, D_{ \pm}=\frac{1}{2}\left(1 \pm \mathrm{i} \gamma_{5}\right) D$. On the rhs of (1) and (2) the θ derivatives act on the \mathbb{J} (constant in superspace), but not the space-time derivatives. Then the basis functions are differential operators in space-time and functions in θ space.

We may express the projection of a vector superfield V_{a} by means of the projectors π_{0}, π_{1}, onto the subspace with $A=0$ or 1 as, respectively,

$$
\begin{align*}
& \pi_{0} V_{a}=e_{0} B_{a}+\bar{u}^{\alpha} \chi_{\alpha a}+\omega_{b} A_{b a} \tag{3}\\
& \pi_{1} V_{a}=e_{ \pm} B_{ \pm a}+\bar{u}^{\alpha \pm} \chi_{\alpha \pm a}+\omega_{ \pm} A_{ \pm} \tag{4}
\end{align*}
$$

The $Y=\frac{3}{2}$ projection $V_{a}^{(3 / 2)}$ of V_{a} is obtained from the $A=0$ part of V_{a} by means of the projector $\frac{1}{3}(2-B)_{a b}$, where $B_{a b}=-(1 / 2 \square) \varepsilon_{a b c d} \partial_{c} \bar{D} \mathrm{i} \gamma_{d} \gamma_{5} D$, its eigenvalues being 2 and -1 . The product rules for D_{α} allow this to be reduced to (from now on we use momentum space instead of position space)

$$
\begin{equation*}
V_{a}^{(3 / 2)}=\frac{2}{3} P^{-2} e_{0} A_{a}+2^{-1 / 2} u P^{-1} \psi_{a}+\omega_{b}\left[h_{a b}+\left(\mathrm{i} / 3 P^{2}\right) \varepsilon_{a b c d} P_{c} A_{d}\right] \tag{5}
\end{equation*}
$$

with the functions $A_{a}, h_{a b}$ and $\psi_{a \alpha}$ satisfying the conditions noted earlier. We have included suitable factors of P_{a} in (5) so that $A_{a}, h_{a b}, \psi_{a \alpha}$ are local functions of V_{a}.

We may evaluate the Lagrangian density L for $V_{a}^{(3 / 2)}$,

$$
\begin{equation*}
L_{3 / 2}=\int \mathrm{d}^{4} \theta V_{a}^{(3 / 2)} P^{2} V_{a}^{(3 / 2)} \tag{6}
\end{equation*}
$$

by means of the identities

$$
\begin{align*}
& \int \mathrm{d}^{4} \theta\left(e_{0} A\right)\left(e_{0} B\right)=-\frac{1}{2} A P^{2} B \\
& \int \mathrm{~d}^{4} \theta\left(\omega_{a} A\right)\left(\omega_{b} B\right)=\frac{1}{2} A \bar{\eta}_{a b} B \tag{7}\\
& \int \mathrm{~d}^{4} \theta\left(u_{\alpha} A\right)\left(\mu_{\beta} B\right)=-A(P \eta)_{\alpha \beta} B
\end{align*}
$$

where A and B are commuting component fields, $\bar{\eta}_{a b}=\eta_{a b}-P_{a} P_{b} / P^{2}$, and we have dropped terms on the RHs which are total derivatives. The resulting super-Weyl Lagrangian density (6) is

$$
\begin{equation*}
L_{3 / 2}=-\frac{1}{3} A_{a}^{2}+\frac{1}{2} h_{a b} P^{2} h_{a b}+\frac{1}{2} \bar{\psi}_{a} P \psi_{a} \tag{8}
\end{equation*}
$$

In order to obtain the linearised super-Poincare Lagrangian from the above it is necessary that we add to $L_{3 / 2}$ various scalars and spinors in order that the component fields $\boldsymbol{A}_{a 1}, \psi_{a \alpha}$ and $h_{a b}$ are unconstrained, though have suitable gauge invariances. In particular, we need to add a scalar to A_{a} and $h_{a b}$ and a Majorana spinor to $\psi_{a \alpha}$. These are contained minimally in a scalar superfield with $A=1$,

$$
\begin{equation*}
V_{ \pm}=P^{-2} e_{ \pm} A_{ \pm}+\bar{u}^{\alpha \pm} \psi_{\alpha \pm}+2 \omega_{ \pm} B_{ \pm} \tag{9}
\end{equation*}
$$

We choose $V_{-}=V_{+}^{*}$ to reduce the number of components and have the Lagrangian density (using integration rules for $A=1$ basis functions similar to those in (7) for the $A=0$ sector)

$$
\begin{equation*}
L_{0}=\int \mathrm{d}^{4} \theta V_{-} V_{+}=A^{*} P^{-2} A+\bar{\psi}_{+} P \psi_{-}+|B|^{2} \tag{10}
\end{equation*}
$$

where $A_{+}=A, B_{\star}=B$. We write the constrained functions $A_{a}, \psi_{a \alpha}, h_{a b}$ in terms of unconstrained ones $V_{a}, \phi_{a \alpha}, f_{a b}$ as $A_{a}=\bar{\eta}_{a b} V_{b}, \psi_{a}=\bar{\eta}_{a b} \phi_{b}-\frac{1}{3} \bar{\eta}_{a b} \gamma_{b} \gamma_{c} \bar{\eta}_{c d} \phi_{d}$ and $h_{a b}=$ $\bar{\eta}_{a c} \bar{\eta}_{b d} f_{c d}-\frac{1}{3} \tilde{\eta}_{a b} \tilde{\eta}_{c d} f_{c d}$. The associated relationships (to within divergences) for the

Lagrangian density $L_{3 / 2}$ are

$$
\begin{align*}
& A_{a}^{2}=V_{a}^{2}+P \cdot V P^{-2} P \cdot V, \tag{11a}\\
& h_{a b} P^{2} h_{a b}=2 L_{\mathrm{E}}(f)+6 P^{2} b, \tag{11b}\\
& \bar{\psi}_{a} P \psi_{a}=2 L_{\mathrm{RS}}(\phi)+\frac{2}{3} \bar{\lambda} P \lambda, \tag{11c}
\end{align*}
$$

where

$$
\begin{align*}
& L_{\mathrm{E}}(f)=\frac{1}{2} f_{a b} P^{2} f_{a b}-f_{a b} P_{a} P_{c} f_{c b}+f_{a b} P_{a} P_{b} f_{c c}-\frac{1}{2} f_{a a} P^{2} f_{b b}, \\
& b=\frac{21}{3}{ }^{1 / 2}\left(f_{a a}-P_{a} P_{b} / P^{2} f_{a b}\right), \tag{12}\\
& L_{\mathrm{RS}}(\phi)=-\frac{1}{2} \varepsilon_{a b c d} \bar{\phi}_{a} \gamma_{5} \gamma_{b} P_{c} \phi_{d}, \\
& \lambda=\gamma \cdot \phi-P^{-1} P \cdot \phi .
\end{align*}
$$

If we define

$$
\operatorname{Re} A=\mathrm{i} P \cdot V, \quad \operatorname{Im} A=\frac{31}{2}{ }^{1 / 2} P^{2} b, \quad \psi=\sqrt{2} \lambda,
$$

then

$$
\begin{equation*}
L_{3 / 2}-\frac{1}{3} L_{0}=L_{\mathrm{E}}(f)+L_{\mathrm{RS}}(\phi)-\frac{1}{3}\left(V_{a}^{2}+|B|^{2}\right) . \tag{13}
\end{equation*}
$$

We have therefore obtained the correct off-shell Lagrangian for Poincaré supergravity, with the associated minimal set of auxiliary fields B and V_{a}.

We note that we may regard (11) as defining a set of 'annihilation rules' for eliminating unwanted component fields from a superfield irrep. If we denote by $J_{\mathrm{p}}\left(\boldsymbol{j}_{A}\right)$ a Bose field of Poincare spin J which has dimension $L^{-1}\left(L^{-2}\right)$, we may rewrite (11a) as the on-shell annihilation rule making the constrained vector A_{a} purely auxiliary,

$$
\begin{equation*}
1_{A}-0_{p} \sim 0 \tag{14}
\end{equation*}
$$

where the 0 on the rhs of (14) denotes a field vanishing on-shell and the signs denote those in the kinetic energy terms. We will need to extend (14) when we turn to higher N, as we will see in $\S 3$.

Our linearised superfield Lagrangian may be written in the compact form

$$
\begin{equation*}
L=\int \mathrm{d}^{4} \theta V_{a} P^{2}\left(\pi_{a b}^{3 / 2}-\frac{1}{3} \pi_{a b}^{0}\right) V_{b}, \tag{15}
\end{equation*}
$$

where V_{a} is now an unconstrained vector superfield $\pi_{a b}^{0}=-P_{a} P_{b} / P^{2} \pi_{0}$, and the scalar superfield (9) is given by $\left|V_{+}\right|^{2}=P \cdot V \pi^{0} P \cdot V$.

We may choose a different irrep to annihilate A_{a} in (8). Instead of taking the $Y=0$ irreps with Poincaré spin content $\left(0_{A}, \frac{1+i}{2}, 0_{p}\right),\left(0_{A}, \frac{1-i}{2}, 0_{p}\right)$ we can try the $A=0, Y=\frac{1}{2}$ irrep on a scalar superfield with content $\left(0_{p}, \frac{1 \pm i}{2}, 1_{A}\right)$. Two of these irreps are needed to contribute one scalar in (11a) and another scalar in (11b). In order to annihilate the two extra 1_{A} 's and one $\frac{1}{2}^{ \pm}$we need two further $Y=0$ irreps and the annihilations rule

$$
\bar{\psi} P \psi-\bar{\lambda} P \lambda=\bar{\phi} \chi, \quad \frac{1}{2}-\frac{1}{2} \sim 0,
$$

where $\psi=\frac{1}{2}\left(\phi+P^{-1} \chi\right)$ and $\lambda=\frac{1}{2}\left(\phi-P^{-1} \chi\right)$. The net result is that on-shell $\left[\left(Y=\frac{3}{2}\right)+\right.$ $\left.(Y=0)^{2}+\left(Y=\frac{1}{2}\right)^{2}\right]$ again reduces to the correct supergravity spectrum. These irreps give the non-minimal set of auxiliary fields (Breitenlohner 1979). We may write the
corresponding superfield Lagrangian as

$$
\begin{equation*}
L=\int \mathrm{d}^{4} \theta\left[V_{a} P^{2}\left(\pi_{a b}^{3 / 2}+\pi_{a b}^{0}\right) V_{b}+A^{*} \pi^{1 / 2} A\right] \tag{17}
\end{equation*}
$$

with component form

$$
\begin{equation*}
L=L_{\mathrm{E}}(f)+L_{\mathrm{RS}}(\phi)+U_{a}^{2}+V_{a}^{2}-A_{a}^{2}+\bar{\lambda} \psi+|B|^{2} \tag{18}
\end{equation*}
$$

after making field redefinitions similar to those in (11) and (16). The differences of signs of the auxiliary fields between (18) and (13) noted by Siegel and Gates (1979) are thus explained in terms of the different irreps used to achieve the correct on-shell $\left(2, \frac{3}{2}\right)$ supergravity multiplet by means of the annihilation rules (14) and (16). This difference will be important in our consideration of $N=2$ supergravity for which the $N=1$ non-minimal set is appropriate.

3. Irreps for $\mathbf{N}=2$ supergravity

The fundamental irrep with superspin $Y=0$ for $N=2$ may be obtained by the method of induced representations by applying the supersymmetry generators $S_{1 i}, S_{2 i}$ to a basis state, $i=1,2$ being the $\mathrm{SO}(2)$ labels. The counting of states, denoted by $\left(J^{\mathrm{P}}, d\right)$, where J^{P} is the Poincaré spin and parity and d the $\mathrm{SO}(2)$ dimensionality, yields

$$
\left(0_{\mathfrak{p}}^{+}, 1\right)+\left(\frac{1}{2}^{ \pm}, 2\right)+\left(1_{\mathfrak{p}}^{-}, 1^{\mathrm{a}}\right)+\left(0_{\mathfrak{p}}^{-}, 1\right)+\left(0_{\mathrm{A}}^{-}, \mathbf{2}\right)+\left(0_{\mathrm{A}}^{+}, 1\right),
$$

where the 1 is the scalar representation of $\mathrm{SO}(2), 2$ is the spinor representation, $\mathbf{2}$ is the traceless symmetric two-dimensional representation and $1^{\text {a }}$ is the antisymmetric onedimensional representation. We distinguish between 1 and $1^{\text {a }}$, even though no such distinction really exists in $\mathrm{SO}(2)$ because in the on-shell classification of states for supergravity the vector fields come in the antisymmetric second-rank tensor representation of $\mathrm{SO}(N)$. Whilst this representation reduces to the trivial one for $N=2$ it does not do so for $N>2$. We wish to develop our discussion of irreps and torsion constraints for $N=2$ in a manner most easily extendable to $N>2$, and thus make this distinction between 1 and $1^{\text {a }}$ throughout the paper.

The only irrep with maximum spin 2 has $Y=1$ (Taylor 1980, 1981) and the corresponding content is
$\left(0_{p}^{+}, 1\right)+\left(\frac{1}{2}^{ \pm i}, 2\right)+\left(1_{p}^{+}, 1^{\mathrm{a}}\right)+\left(1_{\mathrm{p}}^{-}, 1^{\mathrm{a}}\right)+\left(1_{A}^{+}, 1\right)+\left(1_{A}^{-}, 1^{\mathrm{a}}\right)+\left(1_{A}^{+}, \mathbf{2}\right)+\left(\frac{3}{2}^{ \pm i}, 2\right)+\left(2_{\mathrm{p}}^{+}, 1\right)$.
To obtain the correct on-shell assignment $\left(2_{p}^{+}, 1\right)+\left(\frac{3}{2}^{\frac{1}{i}}, 2\right)+\left(1_{p}^{-}, 1^{a}\right)$ from the $Y=1$ irrep we can use the annihilation rules of the previous section. Due to the relatively large number of spin-one fields to be removed we use the further annihilation rule

$$
\begin{equation*}
1_{p}^{+}-1_{p}^{-} \sim 0 \tag{19}
\end{equation*}
$$

This may be proved by expressing an antisymmetric tensor $A_{a b}$ as

$$
A_{a b}=\mathrm{i} P_{[a} U_{b]}+\mathrm{i} \varepsilon_{a b c d} P_{c} V_{d},
$$

and find that, to within total divergences,

$$
A_{a b}^{2}=-\left(P_{[a} U_{b]}\right)^{2}+\left(P_{[a} V_{b]}\right)^{2}
$$

which proves (19). We can now use (11), (14), (16) and (19), and see that at least one
$Y=0$ irrep is needed to obtain $L_{\mathrm{E}}(f)$ and $L_{\mathrm{RS}}(\phi)$. However this does not remove the spin $-\frac{1}{2}$ from $Y=1$, so a further $Y=0$ irrep is needed. In order simultaneously to remove the remaining vectors we need to take this $Y=0$ irrep with the opposite dimension and with an external antisymmetric pair of $\mathrm{SO}(2)$ labels so that the content is

$$
\left(0_{A}^{+}, 1^{\mathrm{a}}\right)+\left(\frac{12^{ \pm i}}{}, 2\right)+\left(1_{\mathrm{A}}^{-}, 1\right)+\left(0_{A}^{-}, 1^{\mathrm{a}}\right)+\left(0_{\mathrm{p}}^{-}, \mathbf{2}\right)+\left(0_{\mathrm{p}}^{-}, 1^{\mathrm{a}}\right) .
$$

The resulting Lagrangian will have, in addition to the spin- 2 and $-\frac{3}{2}$ contributions, the abelian field from the $Y=1$ multiplet together with exactly the auxiliary field structure of de Wit and Van Holten (1979).

Our above analysis has specified the superspin content of the required irreps as being $Y=0$ (twice) and $Y=1$. There are a number of such irreps, and since moreover we do not know the superfields on which the irreps are to be given, we turn to analysing torsion constraints at the linearised level to clarify this situation along lines similar to that for $N=1$.

4. Linearised torsion constraints

We start by linearising the geometrical objects in superspace, the vierbein $\hat{E}_{M}{ }^{A}$, the connection $\hat{\Phi}_{M A}{ }^{B}$, the torsion $\hat{T}_{A B}{ }^{C}$ and the curvature, as follows:
$\hat{E}_{M}{ }^{A}=E_{M}{ }^{A}+H_{M}{ }^{A}, \quad \hat{\Phi}_{M A}^{B}=\Phi_{M A}{ }^{B}, \quad \hat{T}_{A B}{ }^{C}=\stackrel{\circ}{T}_{A B}{ }^{C}+T_{A B}{ }^{C}$,
where $E_{M}{ }^{A}$ and $H_{M}{ }^{A}$ are the flat and linearised vierbein respectively, $\Phi_{M A}{ }^{B}$ is the linearised connection and $\stackrel{\circ}{T}_{A B}{ }^{C}$ and $T_{A B}{ }^{C}$ the flat and linearised torsion. Our notation is $M=(m, \mu i), i=1, \ldots, N$, a world index, where m and μi are the vector and fermionic components, and $A=(a, \alpha i)$ is the respective flat space index. We do not need to take curvatures into account since they can be expressed in terms of the other geometrical objects (Dragon 1979). The linearised torsion is (Wess 1979, Howe and Tucker 1979)
$T_{B C}{ }^{A}=D_{[B} H_{C]}{ }^{A}+{\stackrel{\circ}{T_{B C}}}^{D} H_{D}{ }^{A}-H_{B}^{D} \stackrel{\circ}{T}_{D C}{ }^{A}+(-1)^{b C} H_{C}{ }^{D} \dot{T}_{D B}{ }^{A}+\Phi_{[B C\}}{ }^{A}$,
where $H_{A}{ }^{B}=E_{A}{ }^{M} H_{M}{ }^{B}, \Phi_{A B}{ }^{C}=E_{A}{ }^{M} \Phi_{M B}{ }^{C}$ and [$\}$ is a symmetrisation for a pair of spinor indices and an antisymmetrisation otherwise.

The structure group is chosen to be the Lorentz group. This means that we do not need to introduce a connection for the internal symmetry sector and thus it reduces the number of independent superfields. We also have supercoordinate invariance in superspace. Thus the linearised transformations are respectively

$$
\begin{align*}
& \delta_{L} H_{B}{ }^{A}=L_{B}{ }^{A}, \quad \delta_{L} \Phi_{B C}{ }^{A}=D_{B} L_{C}{ }^{A}, \tag{22a}\\
& \delta_{G} H_{B}{ }^{A}=D_{B} \xi^{A}+\xi^{C} \stackrel{\circ}{T}_{C B}{ }^{A}, \quad \delta_{G} \Phi_{B C}{ }^{A}=0 . \tag{22b}
\end{align*}
$$

We will also introduce local Weyl invariance later in order to select the auxiliary irreps, but we only require the torsion constraints to be invariant under them.

Since the connection appears without derivatives in (21) it can be solved algebraically by putting some components of the torsion equal to zero. There are several sets of equivalent torsion constraints of this type which differ by field redefinitions. Since we are going to use torsions or combinations of torsions which are independent of the connections, we do not need to specify this set of constraints.

We then impose the following set of connection-independent torsion constraints:

$$
\begin{align*}
T_{\alpha+i \beta-i}{ }^{a}= & T_{\alpha+i a}{ }^{a} \\
= & C^{\beta-\beta^{\prime}-} C_{\gamma^{\prime}-\gamma-} T_{\alpha+i \beta^{\prime}-j}^{\gamma^{\prime}-j}-T_{\alpha+i \gamma-j}^{\beta-i}-N i T_{\alpha+i a}{ }^{b}\left(\sigma_{b}^{a}\right)_{\gamma-}^{\beta-}=0, \tag{23a}\\
& T_{\alpha+i \beta+j}^{\gamma-k}=T_{\alpha+i \beta+j}^{a}=0, \tag{23b}\\
& \tilde{T}_{\alpha+i \beta-j}^{a}=0, \tag{23c}\\
& T_{\alpha+i j}{ }^{j}=\tilde{T}_{\alpha+i j}{ }^{k}=\bar{D}_{+[l} \sigma^{a b} T_{+i] j k}-\mathrm{CC}=\bar{D}_{+[i} T_{+i] j k)}+\mathrm{CC}=0, \tag{23d}\\
& \bar{D}_{+i} T_{+i[j k]}+\mathrm{CC}+(i \leftrightarrow l, \text { traceless })=0, \tag{23e}\\
& \bar{D}_{+i} T_{+i[i k]}+\mathrm{CC}=0, \tag{23f}
\end{align*}
$$

(plus a set of algebraic constraints to be solved for the connection) where \sim means traceless on all the internal indices, $T_{\alpha+i j}^{k}=T_{\alpha+i \beta-j}^{\beta-k}$, CC stands for complex conjugation and $A_{i j}+(i \leftrightarrow j$, traceless $)=A_{(i j)}-\delta_{i j} A_{k k}$.

The constraints ($23 a$) are algebraic (or conventional) and can be solved for general N. They express $H_{a}{ }^{B}$ in terms of $H_{\alpha i}{ }^{B}$

$$
\begin{align*}
& H_{b}^{a}=(1 / 2 N) {\left[i\left(C \gamma_{b}\right)^{\alpha+\alpha-} D_{(\alpha+i} H_{\beta-i)}{ }^{a}+\left(\gamma^{a} \gamma_{b}\right)_{\alpha+}^{\beta+} H_{\beta+i}^{\alpha+i}+\left(\gamma^{a} \gamma_{b}\right)_{\alpha-}^{\beta-} H_{\beta-i}^{\alpha-i}\right] } \tag{24}\\
& \mathrm{i}\left(\gamma^{b} C\right)_{\alpha+\beta-} H_{b \gamma-i} \\
&=-[1 / 2(1+N)]\left[D_{(\alpha+i} H_{\beta-j) \gamma-i}+D_{(\alpha+i} H_{\gamma-j) \beta-j}\right. \\
&\left.\quad+\mathrm{i} N\left(\sigma_{b}{ }^{a} C\right)_{\gamma-\beta-} D_{[\alpha+i} H_{a]}^{b}\right]+\frac{1}{2} C_{\beta-\gamma-}\left\{D_{a} H_{\alpha+i}{ }^{a}-(1 / 2 N) D_{\alpha+i}\right. \\
&\left.\quad \times\left[i\left(C \gamma_{a}\right)^{\delta+\delta-} D_{(\delta+i} H_{\delta-j)}{ }^{a}+4 H_{\delta+j}{ }^{\delta+j}+4 H_{\delta-j}^{\delta-i}\right]\right] \tag{25}
\end{align*}
$$

The constraints ($23 b$) can also be solved for general N and they introduce the prepotentials of the theory V^{a} and \bar{V}^{α}

$$
\begin{align*}
& H_{\alpha+i}^{\beta-j}=D_{\alpha+i} \bar{V}^{\beta-j}, \tag{26}\\
& H_{\alpha+j}{ }^{a}=D_{\alpha+j} V^{a}+\mathrm{i}\left(\gamma^{a} C\right)_{\alpha+\beta-} \bar{V}^{\beta-j} . \tag{27}
\end{align*}
$$

This solution is invariant under $\left(S_{\alpha+\beta-}=\left(\gamma^{a} C\right)_{\alpha+\beta-} S_{a}\right)$:

$$
\begin{equation*}
\delta V_{a}=S_{a}, \quad \delta \bar{V}^{\alpha-j}=\frac{1}{4} \mathrm{i} D_{\beta+j} S^{\beta+\alpha-} \tag{28}
\end{equation*}
$$

if S_{a} satisfies

$$
\begin{equation*}
D_{\beta+j} S_{\alpha+\alpha-}+D_{\alpha+j} S_{\beta+\alpha-}=0, \quad D_{\alpha+j} D_{\beta+k} S^{\beta+\alpha-}=0 \tag{29}
\end{equation*}
$$

We also have supercoordinate invariance in superspace (22b) so that the full invariance of the theory is

$$
\begin{equation*}
\delta V^{a}=S^{a}+\xi^{a} \quad \delta \bar{V}^{\alpha-j}=\frac{1}{4} \mathrm{i} D_{\beta+j} S^{\beta+\alpha-}+\bar{\xi}^{\alpha-j} \tag{30}
\end{equation*}
$$

We can now gauge $\bar{V}^{\alpha-j}$ completely away and also the real part of V^{a}, so that the solutions (26) and (27) are reduced to

$$
\begin{align*}
& H_{\beta+i}^{a}=-\mathrm{i} D_{\beta+i} V^{a}, \quad\left(V_{a}\right)^{*}=V_{a}, \tag{31}\\
& H_{\beta+j}^{\alpha-k}=0, \tag{32}
\end{align*}
$$

which is still invariant under

$$
\begin{equation*}
\delta V_{a}=-\operatorname{Im} S_{a} . \tag{33}
\end{equation*}
$$

The solution of these two sets of torsion constraints (23a), (23b) is a simple generalisation of the $N=1$ case (Howe and Tucker 1979).

At this point we note that while for $N=1 V_{a}$ has maximum Poincare spin-2 this is no longer true for $N>1$. In fact, the residual invariance (33) leaves just $Y=\frac{3}{2}$ on V_{a} for $N=1$, but it leaves irreps with $Y=\frac{3}{2}, 2$ for $N=2$ so that higher-spin fields are still present. We now show how a precise knowledge of the irrep content of V_{a} can be obtained. For $N=1$ the solution of (29) is

$$
S_{\alpha+\beta-}=D_{\alpha+} \Lambda_{\beta-},
$$

$\Lambda_{\beta-}$ being an unconstrained spinor superfield. It is easily shown, using the algebra of D's (Sokatchev 1975), that

$$
\begin{aligned}
& \left(G+2 P^{2} A\right) S_{\alpha+\beta-}=0 \\
& \left(B_{a}^{b}+2 A \delta_{a}^{b}-2 \delta_{a}^{b}\right) S_{b}^{\perp}=0
\end{aligned}
$$

where $S_{a}=S_{a}^{\perp}+S_{a}^{\|}, P^{a} S_{a}^{\perp}=0,\left(\delta_{a}^{b}-P_{a} P^{b} / P^{2}\right) S_{b}^{\|}=0$. Therefore the irrep content of S_{a} is

$$
\begin{array}{lr}
S_{a}^{\|}: Y=0, G=-2 P^{2} ; & Y=\frac{1}{2}, G=0 \\
S_{a}^{\perp}: Y=\frac{1}{2}, G=0 ; & Y=1, G=-2 P^{2}
\end{array}
$$

and since by (33) we can gauge from V_{a} the imaginary part of S_{a}, the only irrep left in V_{a} is $Y=\frac{3}{2}$, that is, the Weyl multiplet. A similar analysis for $N=2$ shows that the irrep content of S_{a} is

$$
\begin{array}{ll}
S_{a}^{\mathrm{i}}: Y=0, G=-4 P^{2}, \tau=0 ; & Y=\frac{1}{2}, G=-2 P^{2}, \tau^{2}=1 \\
S_{a}^{\perp}: Y=\frac{1}{2}, G=-2 P^{2}, \tau^{2}=1 ; & Y=1, G=-4 P^{2}, \tau=0,
\end{array}
$$

($\tau=1 / P^{2} \bar{D}_{1} \mathrm{i} P D_{2}$ being the third Casimir operator of the $N=2$ algebra (Taylor 1980, 1981)) leaving in V_{a} a multitude of irreps so that V_{a} must be further constrained.

We still have to fix the Lorentz gauge in superspace (22a). It can be used to gauge away some components of $H_{\alpha+i}^{\beta+i}$, leaving

$$
\begin{equation*}
H_{\alpha+i}{ }^{\beta+j}=\delta_{\alpha+}^{\beta+}\left(\delta_{i j} A+\tilde{H}_{i j}\right)+\left(\sigma_{a b}\right)_{\alpha+}^{\beta+} \tilde{H}_{i j}^{a b} . \tag{34}
\end{equation*}
$$

The next constraint (23c) is mixed in the sense that it involves algebraic as well as differential constraints. We can rewrite it in the form $\left(C \gamma^{b}\right)^{\alpha+\beta-} \tilde{T}_{\alpha+i \beta-j}^{a}=0$ and take the irreducible pieces. The trace and symmetric part (on the vector indices) can be solved algebraically for $\tilde{H}_{i j}^{a b}$ and partially for $\tilde{H}_{i j}$. Then (34) can be written as
$H_{\alpha+i}{ }^{\beta+j}=\delta_{\alpha+}{ }^{\beta+}\left(H_{i j}+\mathrm{i} \tilde{A}_{i j}\right)+\frac{1}{16} \delta_{\alpha+}{ }^{\beta+} \bar{D}_{i} \mathrm{i} \tilde{\gamma}^{a} \gamma_{5} D_{i} V_{a}-\frac{1}{8} \mathrm{i}\left(\sigma_{a b}\right)_{\alpha+}{ }^{\beta+} \bar{D}_{i} \mathrm{i} \tilde{\gamma}^{a} \gamma_{5} D_{i} V^{b}$,
where $H_{i j}=-H_{j i}=H_{i j}^{*}, \tilde{A}_{i j}=\tilde{A}_{j i}=\tilde{A}_{i j}^{*}$. The antisymmetric part of the constraint gives a differential equation for V_{a} whose solution for $N=2$ is

$$
\begin{equation*}
V_{a}=\bar{D}_{j} \mathrm{i} \gamma_{a} \gamma_{5} D_{i} V, \tag{36}
\end{equation*}
$$

where V is a pre-prepotential. An analysis of the irrep content of V_{a} shows that $V_{a}^{\|}$can be gauged away and V_{a}^{\perp} has $Y=1, G=\tau=0$ (singlet) which is the Weyl multiplet for $N=2($ de Wit et al 1980a, b, de Wit and van Holten 1979).

5. Auxiliary irreps

Now we turn to the constraints which give rise to the auxiliary irreps. They can be best understood as partial gauge choices for the Weyl transformation in superspace (Gates et al 1980). We assume that only the torsion constraints are invariant under these transformations. The linearised form is

$$
\begin{equation*}
\delta H_{\alpha i}^{B}=\Lambda E_{\alpha i}^{B}+\tilde{L}_{i j} E_{\alpha j}^{B}, \tag{37}
\end{equation*}
$$

where Λ is complex, and for $N=2, \tilde{L}_{i j}=\mathrm{i} \tilde{M}_{i j}+\Lambda_{i j}$ with $\tilde{M}_{i j}=\tilde{M}_{j i}=\tilde{M}_{i j}^{*}, \Lambda_{i j}=-\Lambda_{j i}=\Lambda_{i j}^{*}$ The invariance of the algebraic constraints can be used to define the Weyl transformations on the connection and on the other components of the vierbein.

We can then write down the Weyl transformation for the components of the torsion which were not used till now, and count the irreps which are generated when the constraints are imposed. The situation is quite different from $N=1$ (Gates et al 1980), since in that case there are only two possible partial gauge choices which give rise to the minimal and non-minimal set of auxiliary fields. For $N=2$ there is a large range of partial gauge choices which do not seem to be equivalent among each other (regarding the irrep content), and for which we do not even know whether a solution for the corresponding constraints exist. In trying to obtain the minimal set of auxiliary fields (de Wit and van Holden 1979) we notice that a slight variation of the last constraint gives a non-minimal set.

The invariance of the constraints (23d) requires that

$$
\begin{align*}
& D_{\alpha+i} \Lambda=0 \tag{38a}\\
& \widetilde{\bar{D}_{i} D_{i}}\left(\Lambda^{*}+\Lambda\right)+\bar{D}_{i} \mathrm{i} \tilde{\gamma}_{5} D_{i}\left(\Lambda^{*}-\Lambda\right)=0 \tag{38b}\\
& D_{\alpha+i} \tilde{M}_{j k}+\tilde{D}_{\alpha+j} \tilde{M}_{k i}+D_{\alpha+k} \tilde{M}_{i j}-\frac{1}{2}\left(\delta_{i j} D_{\alpha+i} \tilde{M}_{l k}+\delta_{i k} D_{\alpha+i} \tilde{M}_{l j}+\delta_{i k} D_{\alpha+l} \tilde{M}_{l i}\right)=0 \tag{38c}\\
& \bar{D}_{i} \sigma^{a b} D_{j} \Lambda_{k l}=0 \tag{38d}
\end{align*}
$$

Equations (38a) and (38b) tell us that Λ is chiral with $F=4 P^{2}\left(F=\bar{D}_{1} D_{1} \bar{D}_{2} D_{2}\right.$ is an operator which reverses the chirality on chiral irreps and can be used to impose a reality condition on such irreps. Its eigenvalues are $F= \pm 4 P^{2}$ (Taylor 1980, 1981)); equation (38c) requires that $\mathscr{M}_{i j}$ has both $G=-4 P^{2}$, and $-2 P^{2}$, but since it is real the only solution is $\tilde{M}_{i j}=0$. Finally equation ($38 d$) implies that $\Lambda_{i j}$ carries the irreps $Y=G=0$, $\tau^{2}=4, \tau=0$. The solution of the corresponding constraints is

$$
\begin{array}{ll}
A=\frac{1}{8} D_{\delta+j} D_{\delta-j} V^{\delta+\delta-}+T, & D_{\alpha+} T=0, \\
T=\frac{1}{4} \bar{D}_{+i} D_{+i} \bar{D}_{+j} D_{+j} V+S, & D_{\alpha+} S=\widetilde{D_{i} D_{j}} S=0, \\
\tilde{A}_{i j}=0, & \\
\bar{D}_{i} \sigma^{a b} D_{i} H_{k l}=0 . & \tag{39d}
\end{array}
$$

In (39a) T is a compensating chiral superfield which is further constrained with solution given by ($39 b$) (unlike $N=1$ when it is chiral but otherwise unconstrained). Then the solution ($39 b$) involves the true compensating superfield for $N=2$. The conditions on S show that it carries the irrep $Y=\tau=0, F=4 P^{2}$, that is, the vector-gauge multiplet (de Wit and van Holten 1979). Equation (39d) implies that $H_{i j}$ carries the irreps $Y=G=0$, $\tau^{2}=4$ and $\tau=0$. At this stage we have fixed all Weyl parameters and we have a non-minimal formulation with $56+56$ fields.

The last two constraints (23e) and (23f) impose further conditions on the Weyl parameter $\Lambda_{i j}$:

$$
\begin{align*}
& \widetilde{\bar{D}_{i} D_{i} \Lambda_{k l}}=0 \tag{40a}\\
& \bar{D}_{i} D_{i} \Lambda_{k l}=0 \tag{40b}
\end{align*}
$$

Equation (40a) removes $Y=G=0, \tau^{2}=4$, while (40b) removes $Y=1, G=\tau=0$ (the tensor-gauge multiplet (de Wit and van Holden)) giving rise to the minimal and a non-minimal set of auxiliary fields with $40+40$ and $48+48$ fields respectively. The corresponding constraints on $H_{i j}$ are then

$$
\begin{align*}
& \widetilde{\overline{D_{i} D_{i}} H_{k l}=0,} \tag{41a}\\
& {\overline{D_{i}} D_{i} H_{k l}}^{2}=0 . \tag{41b}
\end{align*}
$$

These formulations depend on a real scalar superfield V, a scalar superfield S (constrained by ($39 b$), both being scalars under $\mathrm{SO}(2)$ and a real scalar superfield $H_{i j}$ in the antisymmetric representation of $\mathrm{SO}(2)$ (constrained by (39d), (41a) or (41b)). Unlike the non-minimal $N=1$ formulation in superspace (Siegel and Gates 1979, Bedding et al 1979, Gates 1981). we do not have a compensating spinor superfield. Also the structure of the constraints is similar to the minimal $N=1$ case in the sense that upon reduction we obtain the constraints for the minimal set. In fact the reduction does not distinguish between the minimal and non-minimal $N=2$ cases.

6. $N=2$ linearised superfield Lagrangians

Our analysis of torsion constraints of $\$ \S 4$ and 5 has somewhat narrowed down the choice of irreps to three possible choices, all containing the minimal set described in $\S 3$. We showed that the $Y=1$ Weyl irrep containing the graviton and gravitino is in the scalar superfield V and that there are auxiliary $Y=0$ irreps in S and $H_{i j}$. The irrep in S has $F=4 P^{2}$, whilst the irreps in $H_{i j}$ distinguish the three possibilities from each other. In both the $48+48$ or $56+56$ scheme $H_{i j}$ has the $\tau^{2}=4, Y=0$ irrep as well as the $Y=G=\tau=0$ irrep in the latter case.

The spin- $\mathrm{SO}(2)$ content of the $Y=0, \tau^{2}=4$ irrep is obtained from the $Y=G=\tau=$ 0 irrep by direct product of the latter with the two-dimensional symmetric traceless representation of $\mathrm{SO}(2)$, to give for the former
$\left(0_{A}^{-}, \mathbf{2}\right)+\left(0_{A}^{+}, \mathbf{2}\right)+\left(0_{\mathbf{P}}^{-}, \mathbf{2}\right)+\left(0_{\mathbf{P}}^{+}, \mathbf{2}\right)+\left(0_{\mathrm{P}}^{-}, 1\right)+\left(0_{\mathrm{P}}^{-}, 1^{\mathrm{a}}\right)+\left(1_{\mathrm{A}}^{-}, \mathbf{2}\right)+\left(\frac{1}{2}^{ \pm i}, 2\right)+\left(\frac{1+1}{2^{+1}}, 2\right)$.
The case of $48+48$ can easily be disposed of by the observation that there is a single unwanted spin- $\frac{1}{2} \mathrm{SO}(2)$-doublet which remains on-shell. The case of $56+56$ is more subtle, but the crucial difficulty arises from the pair of physical $\mathrm{SO}(2)$-doublet scalars in the $\tau^{2}=4$ irrep. There is only one $S O(2)$-doublet vector, and that is in the Weyl multiplet, so at least one of those scalars will persist on-shell. We are left therefore solely with the minimal $40+40$ scheme.

We can now rapidly write down the linearised superfield Lagrangian which corresponds to this situation. It is necessary to take the projectors (Taylor 1980, 1981) on to the appropriate irreps in V, S and $H_{i j}$ (which solves the remaining torsion con-
straints),

$$
\begin{gather*}
\pi_{1} V=\pi_{Y=1} V=\left[\frac{3}{4}\left(1-A_{1}\right)\left(1-A_{2}\right)-\left(1 / 4 P^{4}\right) J\right] V, \\
\pi_{2} S=\pi_{F=4 P^{2}} S=\left\{\left(R / 16 P^{4}\right)+\frac{1}{4} A_{1} A_{2}+\left(1 / 16 P^{2}\right)\left[\bar{D}_{1} D_{1} \bar{D}_{2} D_{2}-\bar{D}_{1} \mathrm{i} \gamma_{S} D_{1} \bar{D}_{2} \mathrm{i} \gamma_{5} D_{2}\right]\right\} S, \tag{42}
\end{gather*}
$$

$\pi_{3} H_{i j}=\pi_{Y=G=\tau=0} H_{i j}=\left(1 / 16 P^{4}\right)\left(-R+P^{2} W+4 P^{4} A_{1} A_{2}\right) H_{i j}$,
where

$$
\begin{align*}
& A_{i}=\left(1 / 4 P^{2}\right)\left(\bar{D}_{i} D_{i}\right)^{2}, \\
& J=\frac{1}{4}\left(P^{2} \bar{D}_{1} \mathrm{i} \gamma_{a} \gamma_{5} D_{1} \bar{D}_{2} \mathrm{i} \gamma_{a} \gamma_{5} D_{2}-\bar{D}_{1} \mathrm{i} P \gamma_{5} D_{1} \bar{D}_{2} \mathrm{i} P \gamma_{5} D_{2}\right), \\
& R=\bar{D}_{1} \mathrm{i} P \gamma_{5} D_{1} \bar{D}_{2} \mathrm{i} P \gamma_{5} D_{2}, \tag{43}\\
& W=\bar{D}_{1} D_{1} \bar{D}_{2} D_{2}-\bar{D}_{1} \mathrm{i} \gamma_{5} D_{1} \bar{D}_{2} \mathrm{i} \gamma_{5} D_{2} .
\end{align*}
$$

The superfield Lagrangian is thus finally

$$
\begin{equation*}
L=\int \mathrm{d}^{4} \theta\left(V \pi_{1} V-S \pi_{2} S-H_{i j} \pi_{3} H_{i j}\right) \tag{44}
\end{equation*}
$$

We may write down the component expansions in basis functions for the corresponding superfields. For $\pi_{1} V$ we first expand V in products of basis functions $e_{0}, u_{\alpha}, \omega_{a}$ in each of θ_{1} and θ_{2} respectively, and then project onto the $J=P^{4}$ subspace by means of the projector $\left(1 / 4 P^{4}\right)\left(3 P^{4}+J\right)$. After a little algebra the resultant superfield is

$$
\begin{align*}
\pi_{1} V=\left[\left(P^{2}\right)^{-1}\right. & \left.e_{0} e_{0}-\frac{1}{3} \omega_{a} \omega_{a}\right] A+\left(P^{2}\right)^{-1}\left(e_{0} \omega_{a}+\omega_{a} e_{0}\right) A_{a} \\
& +b_{a i j} B_{a i j}+\left(2 P^{2}\right)^{-1} \bar{u}_{i} \mathrm{i} \sigma_{a b} u_{j} T_{a b i j} \\
& +\left(2 P^{2}\right)^{-1} \bar{u}_{i} \mathrm{i} \gamma_{a} u_{j} A_{a i j}+\left(\omega_{(a} \omega_{b)}-\frac{2}{3} \bar{\eta}_{a b} \omega_{c} \omega_{c}\right) h_{a b} \tag{45}\\
& +\left[\omega_{a}\left(\bar{u}_{i} P^{-1}\right)^{\alpha}+e_{0}\left(\bar{u}_{i} \sigma_{a b} P_{b} \gamma_{5} P\right)^{\alpha}\right] \psi_{a \alpha i}, \\
& b_{a i j}=\left(P^{2}\right)^{-1}\left(\begin{array}{cc}
e_{0} \omega_{a}-\omega_{a} e_{0}+\mathrm{i} \varepsilon_{a b c d} P_{b} \omega_{c} \omega_{d} & b_{a 21} \\
-\frac{1}{2} \bar{u} \gamma_{a} \gamma_{5} u & -b_{a 11}
\end{array}\right),
\end{align*}
$$

with $P^{a} A_{a}=P^{a} B_{a i j}=P^{a} A_{a i j}=P^{a} h_{a b}=P^{a} \psi_{a}=h_{[a b]}=0$. For $\pi_{2} S$ we may combine the $G=+4 P^{2}$ irrep constructed from products of ($e_{+}, u_{\alpha+}, \omega_{+}$) basis functions and its complex conjugate and project out the $F=+4 P^{2}$ part, giving

$$
\begin{align*}
\pi_{2} S=\left[\left(2 P^{2}\right)^{-1}\right. & \left.e_{+} e_{+}+2 \omega_{+} \omega_{+}+\mathrm{cc}\right] A \\
& +\mathrm{i}\left[\left(2 P^{2}\right)^{-1} e_{+} e_{+}-2 \omega_{+} \omega_{+}+\mathrm{CC}\right] B+\left(2 P^{2}\right)^{-1}\left(e_{+} \omega_{+}+\omega_{+} e_{+}+\mathrm{CC}\right) F \\
& +b_{i j} B_{i j}+\left(4 P^{2}\right)^{-1} \bar{u}_{i} \mathrm{i} \sigma_{a b} u_{j} F(A)_{a b i j} \\
& +\left(P^{2}\right)^{-1}\left\{\left[\left(e_{+} \bar{u}^{\alpha+i}-2 \omega_{-}\left(\bar{u}_{-} \mathrm{i} P\right)^{\alpha+}\right] \psi_{\alpha+i}+\mathrm{cC}\right\},\right. \tag{46}\\
& b_{i j}=\mathrm{i}\left(\begin{array}{cc}
e_{+} \omega_{+}-\omega_{+} e_{+}-\mathrm{CC} & b_{21} \\
-\frac{1}{2} \bar{u} \mathrm{i} \gamma_{5} u & -b_{11}
\end{array}\right) .
\end{align*}
$$

Finally $\pi_{3} H_{i j}$ is constructed by projecting the $G=0, A=2$ superfield constructed from products of $\left(e_{+}, u_{\alpha+}, \omega_{+}\right)$and ($e_{-}, u_{\alpha-}, \omega_{-}$) basis functions onto the subspace with

$$
\begin{align*}
& W=8 P^{2} \text { to give } \\
& \begin{aligned}
& \pi_{3} H_{i j}=\left(P^{2}\right)^{-1}\left(e_{+} \omega_{-}+\omega_{+} e_{-}+\mathrm{CC}\right) A_{i j}+\mathrm{i}\left(P^{2}\right)^{-1}\left(e_{+} \omega_{-}-\omega_{+} e_{-}-\mathrm{CC}\right) F_{i j} \\
&+\left[\left(2 P^{2}\right)^{-1} e_{+} e_{-}+2 \omega_{+} \omega_{-}+\mathrm{CC}\right] D_{i j}+d_{k[i} B_{i j k}+\left(2 P^{2}\right)^{-1} \bar{u}_{i} \mathrm{i} \gamma_{a} u_{j} V_{a} \\
&+\left(2 P^{2}\right)^{-1}\left[\left(e_{--} \bar{u}^{\alpha+[i}-2 \omega_{+}\left(\bar{u}_{-[i} P\right)^{\alpha+}\right) \psi_{\alpha+i]}+\mathrm{CC}\right],
\end{aligned} P^{a} V_{a z}=0, \\
& \\
& d_{i j}=\mathrm{i}\left(4 P^{2}\right)^{-1}\left(\begin{array}{cc}
e_{+} e_{-}+4 P^{2} \omega_{-} \omega_{+}-\mathrm{CC} & d_{12} \\
\bar{u} \mathrm{i} P \gamma_{5} u & -d_{11}
\end{array}\right) . \tag{47}
\end{align*}
$$

The field redefinitions are accomplished exactiy as described in §3, where the first and second $Y=0$ multiplets are $\pi_{2} S$ and $\pi_{3} H_{i j}$ as expressed above.

The superfield Lagrangian (44) may be written, after recombination, as

$$
\left.\left.\begin{array}{rl}
{\left[\left(2_{\mathrm{p}}^{+}, 1\right)-\left(0_{\mathrm{p}}^{+},\right.\right.} & 1)]+\left[\left(\frac{3}{2} \pm i\right.\right. \\
& \left.2)-\left(\frac{1}{2}^{ \pm i}, 2\right)\right]+\left(1_{\mathrm{p}}^{-}, 1^{\mathrm{a}}\right) \\
& -\left[\left(1_{A}^{+}, 2\right)-\left(0_{\mathrm{p}}^{-}, 2\right)\right]-\left[\left(1_{A}^{+}, 1^{\mathrm{a}}\right)+\left(0_{\mathrm{p}}^{-}, 1^{\mathrm{a}}\right)\right]-\left[\left(1_{A}^{+}, 1\right)-\left(0_{\mathrm{p}}^{-}, 1\right)\right] \\
& +\left[\left(1_{A}^{-}, 1\right)-\left(0_{\mathrm{p}}^{-}, 1\right)\right]-\left(0_{A}^{-}, 2\right)-\left(0_{A}^{+}, 1\right)-\left(0_{A}^{-}, 1^{\mathrm{a}}\right)-\left(0_{A}^{+}, 1^{\mathrm{a}}\right) \\
& -\left[\left(1_{\mathrm{p}}^{+}, 1^{\mathrm{a}}\right)-\left(1_{\mathrm{p}}^{-}, 1^{\mathrm{a}}\right)\right]+\left[\left(\frac{1}{2}^{ \pm i}, 2\right)-\left(\frac{1}{2} \pm i\right.\right.
\end{array}\right)\right] .
$$

According to our discussion of $\S \S 2$ and 3 , the first three terms are the linearised Einstein, Rarita-Schwinger and Maxwell Lagrangian, whilst all the remainder are purely auxiliary, giving the auxiliary fields of de Wit and van Holten (1979).

7. Concluding remarks

Our superspace analysis is not directly comparable with other formulations (Castellani et al 1980, Stelle and West 1978, Wess 1979) which are based on an $\mathrm{SU}(2)$ group (either gauged in superspace or not), since the defining conditions for the irreps depend strongly on which group is being used. This explains why some of our differential torsion constraints differ from those presented in Stelle and West (1978) although the irrep content is the same.

We also meet a different situation from $N=1$ where the breaking of the super-Weyl invariance leads us to non-minimal formulations for which there do not exist Poincaré Lagrangians. However, because of the great number of super-Weyl partial gauge choices, we cannot conclude that a non-minimal formulation does not exist.

We have tried to divide our torsion constraints into those expected to be applicable to higher N and those special to $N=2$. We may attempt to extend the latter, as well as the former, to higher N. However, more recent work (Rivelles and Taylor 1981) indicates the need for the presence of central charges in order to go off-shell for $N \geqslant 3$ supergravities. Because of this, considerable changes of constraints may well be necessary in order to go beyond $N=2$.

We must recognise that our recent results on the need for spin-reducing central charges for higher N (Rivelles and Taylor 1981) indicate that both classical and quantal features of the $N=2$ case will be modified considerably even at $N=3$. We propose therefore to investigate this and higher- N cases more fully by the techniques we have used successfully for $N=2$.

Acknowledgments

We would like to thank P C West for helpful discussions, and one of us'(VOR) would gratefully like to acknowledge CAPES for financial support whilst this work was being performed.

References

Bedding S, Downes-Martin S and Taylor J G 1979 Ann. Phys., NY 120175
Breitenlohner P 1979 Phys. Lett. 80B 217
Castellani L, Gates S J and van Nieuwenhuizen P 1980 Phys. Rev. D 222364
Dragon N 1979 Z. Phys C 229
Gates S J 1981 in Superspace and Supergravity ed S Hawking and M Roček (Cambridge: CUP) p 219
Gates S J, Stelle K S and West P C 1980 Nucl. Phys. B 169347
Grisaru M J and Siegel W 1981 Caltech. Preprint CALT-68-816
Howe P S and Tucker R W 1979 J. Phys. A: Math. Gen. 12 L21
Namazie M A and Storey D 1979 Nucl. Phys. B 157170
Rivelles V O and Taylor J G 1981 Phys. Lett. to be published
Salam A and Strathdee J 1975 Phys. Rev. D 111521
Siegel W 1979 Phys. Lett. 84B 197
Siegel W and Gates S J 1979 Nucl. Phys. B 14777
Sokatchev E 1975 Nucl. Phys. B 9996

- 1980 CERN Preprint Ref. TH 3007-CERN

Stelle K S and West P C 1978 Phys. Lett. 97B 333
Taylor J G 1979 King's College Preprint

- 1980 Nucl. Phys. B 169484

1981 in Superspace and Supergravity ed S Hawking and M Roček (Cambridge: CUP) p 363
Wess J 1979 Lectures given at the Boulder Summer School (1979) 530
de Wit B and van Holten J W 1979 Nucl. Phys. B 155530
de Wit B, van Holten J W and Van Proeyen A 1980a Nucl. Phys. B 167186
——1980b Nucl. Phys. B 172543

