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Linearised N = 2 superfield supergravity 

V 0 Rivellest and J G Taylor 
Department of Mathematics, King’s College, London, UK 

Received 27 April 1981, in final form 9 July 1981 

Abstract. We present a formulation of linearised N = 2 supergravity in superfield form by 
solving linearised torsion constraints in superspace and identifying the irreducible 
representations generated by them with the multiplets which constitute the minimal N = 2 
supergravity. After building the linearised Lagrangians for N = 1 supergravity (minimal 
and non-minimal) from the respective irreducible representations, we construct an uncon- 
strained linearised superfield Lagrangian for the N = 2 case. 

1. Introduction 

One of the outstmding problems in extended supergravity is that of obtaining an 
extended superfield formulation of the cases with an internal SO(N) symmetry for 
N a 2. Such a formalism should allow the manipulation of both physical and auxiliary 
field variables, and might even aid in the discovery of the latter for N 2 3. Furthermore, 
ultraviolet divergence cancellations discovered in low orders for N < 8 should become 
more transparent in an extended superfield language. 

A complete geometrical superfield formulation of N = 1 supergravity has already 
been presented by various authors (Siegel and Gates 1979, Bedding et a1 1979) and its 
quantum features analysed (Siegel 1979, Namazie and Storey 1979, Taylor 1979, 
Grisaru and Siegel 1981). The complete off-shell component structure for N = 2 has 
recently been given (de Wit et a1 1980a, b) and a constrained superfield Lagrangian 
constructed (Sokatchev 1980). In order to develop a better understanding of the N = 2 
case before proceeding to higher N, we will analyse here the construction of an 
extended superfield framework for N = 2 supergravity at the linearised level. This will 
involve describing appropriate techniques for classifying irreducible multiplets in a 
concise fashion, for writing down the corresponding Lagrangian, and for solving 
appropriate linearised torsion constraints (Castellani et a1 1980, Stelle and West 1978, 
Wess 1979). 

We start by developing our notation and applying it to the case N = 1. We especially 
consider the procedure of field redefinitions required to achieve the linearised PoincarC 
supergravity Lagrangian which selects certain irreps for both the minimal and non- 
minimal formulation. We then discuss the same features for N = 2, giving the field 
redefinitions producing the minimal auxiliary fields (de Wit and van Holten 1979) 
required for a linearised PoincarC Lagrangian to exist. In 0 4 we solve linearised torsion 
constraints of algebraic form expected to be valid for higher N, and extend these to 
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differential torsion constraints specialised to extract the N = 2 Weyl and auxiliary 
multiplets. We then present a linearised superfield Lagrangian incorporating these 
irreps. Finally we make some remarks on the extension of the above work to higher N. 

2. Superfield irreps for N = 1 supergravity 

In order to describe the strategy we propose to adopt for higher N, let us first consider 
the construction of a linearised superfield version of the simplest case of N =  I 
supergravity. To do that we use the fact that the known Poincare spin content of an 
off -mass-shell massive irreducible representation (irrep) with superspin Y of the N = 1 
super-symmetry algebra is (Salam and Strathdee 1975) t Y - - &  Y2. Y + $ I  (or ( ( I2 ,  i i  
when Y = 0). The irrep containing maximal spin 2 has therefore the value Y = :, with 
component fields A,, = &hob = hcah] = h,, = tya)it*C(/ni;l = 0 
and $aaa is Majorana. This Weyl multiplet can have a superfield representation on 
superfields CP, with external PoincarG spin j provided j = 2,; or 1. The value =- I may 
be selected by one of various criteria. The most general arises from the fully nonlinear 
supergeometric approach to N = 1 supergravity (Siege1 and Gates 1979, Bedding er iii 

1979). The most specific, and more appropriate for our linearised approach to higher A' 
superfield supergravities, makes use of torsion constraints which reduce the super- 
achtbein EaM and super-connection QAs to the covariant derivatives of a vector and 
lower external spin superfields. 

On such a superfield we may easily extract the Y = 3 irrep by means of the 
appropriate projection operator. The result is made most transparent by use of the 
basis functions of the Y = 0 and Y = $ irreps on a scalar superfield. These are the 
eigenfunctions of A = -(40)-1(fiD)2 with eigenvalues A = 1 and 0 respectively, where 
0, is the flat superspace covariant derivative of Salam and Strathdee and = $,a,. 
Since A' = A  we may construct the basis functions for Y = 0 and 4 as ATD, and 
(1 -A).rrD,, where wD, are the 16 possible independent products of D, with itself. 
When A = 1 the representations are still reducible and we split thzm with G L- 

-B8ysD. Since G2 = 4P4A the eigenvalues are G = +2P2 and the basis functions In 
this sector are (1 F G/20)7rD,. By use of the identities for products of De's (Sokatchev 
1975) we can show that these functions reduce to the sets 

hob where &A, = 

c 

and 

when A =0, 1 respectively. Our conventions and notation are qab = 
diag(1, - 1, - 1, - l), E0123 = -1, y~ = y0y1y2y3 and DD* =d,D,, D, = $(l *iys)D. 
On the RHS of (1) and (2) the 8 derivatives act on the U (a constant in superspace), but not 
the space-time derivatives. Then the basis functions are differential operators in 
space-time and functions in 6 space. 
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We may express the projection of a vector superfield V, by means of the projectors 
ro, rl, onto the subspace with A = 0 or 1 as, respectively, 

The Y = $projection Vb312’ of Va is obtained from the A = 0 part of V, by means of the 
projector f ( 2  -Blab, where Bab = -( 1 / 2 0 ) & a b c d d c f i ’ y d ’ y s D ,  its eigenvalues being 2 and 
-1. The product rules for Da allow this to be reduced to (from now on we use 
momentum space instead of position space) 

( 5 )  Vh3l2’ = $P-2eoA, f 2 - 1 ’ 2 ~ ~ - 1 $ a  + W b [ h a b  + ( i / 3 P 2 ) E a b c d P J d ] ,  

with the functions A,, hab and +baa satisfying the conditions noted earlier. We have 
included suitable factors of Pa in ( 5 )  so that A,, hab, are local functions of V,. 

We may evaluate the Lagrangian density L for Vb3‘2’, 

by means of the identities 

J d48 ( e o A ) ( e o B )  = -$AP2B, 

I d48 ( u , A ) ( c L B B )  = - - A ( P T ) , B B ,  

where A and B are commuting component fields, f a b  = q a b  -PaPb/P2, and we have 
dropped terms on the RHS which are total derivatives. The resulting super-Weyl 
Lagrangian density (6) is 

(8) 

In order to obtain the linearised super-Poincar6 Lagrangian from the above it is 
necessary that we add to L3/2 various scalars and spinors in order that the component 
fields Aal, and hab are unconstrained, though have suitable gauge invariances. In 
particular, we need to add a scalar to A, and hob and a Majorana spinor to $aa, These 
are ,contained minimally in a scalar superfield with A = 1, 

L3/2 = -$A; + $haZ2hab + $&J6,ha. 

V, = P-’e,A, f ii“”$,, + 2w,B,. (9) 

We choose V- = V: to reduce the number of components and have the Lagrangian 
density (using integration rules for A = 1 basis functions similar to those in (7) for the 
A = 0 sector) 

Lo = d48 V- V+ = A*P-2A + q+P$- + [BIZ, (10) I 
where A+ = A, B,  = B. We write the constrained functions A,, hab in terms of 
unconstrained Ones V a ,  6aay f a b  as A a  = f a b  vb, $a = f a b 6 b  - & a b Y b Y c f c d 6 d  and hab  = 
f a c ’ f b d  f c d  - 5 ‘ fab‘ fcd  fed. The associated relationships (to within divergences) for the 
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We have therefore obtained the correct off-shell Lagrangian for Poincare supergravity, 
with the associated minimal set of auxiliary fields B and V,. 

We note that we may regard (11) as defining a set of 'annihilation rules' for 
eliminating unwanted component fields from a superfield irrep. If we denote by J,(JA) a 
Bose field of Poincare spin J which has dimension L-'(L-2),  we may rewrite ( l l a  1 as 
the on-shell annihilation rule making the constrained vector A, purely auxiliary. 

1.4 -0,-0, (14) 

where the 0 on the RHS of (14) denotes a field vanishing on-shell and the signs denote 
those in the kinetic energy terms. We will need to extend (14) when we turn to higher N, 
as we will see in $ 3 .  

Our linearised superfield Lagrangian may be written in the compact form 

where v, is now an unconstrained vector superfield = -PaPh/P2q, and the Scalar 
superfield (9) is given by 1 V+I2 = P * V r 0 P  . V. 

We may choose a different irrep to annihilate A,  in (8). Instead of taking the Y = 0 
irreps with Poincar-6 spin content (OA, 5 , O p ) ,  (OA, $-', 0,) we can try the A = 0, Y = !2 
irrep on a scalar superfield with content (Op, T , lA) .  Two of these irreps are needed to 
contribute one scalar in (1 l a )  and another scalar in (1 1 b) .  In order to annihilate the two 
extra 1A'S and one f" we need two further Y = 0 irreps and the annihilations rule 

IC1 

1 *l 

i l61  z-z-0 ,  

where + = 4(4 +F-'x) and A = 1 (4 -F- ' x j .  The net result is that on-shell [( Y = 2) + 

( Y = 0)2 + ( Y  =$)'I again reduces to the correct supergravity spectrum. These irreps 
give the non-minimal set of auxiliary fields (Breitenlohner 19791. We may write the 

1 1  JF$ - KPA = &x, 
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corresponding superfield Lagrangian as 

L =  d4~[VaP2(7r~~2+7r~b)Vb+A*7r1'2A], (17) 

L=LE(f)+LRS(r$)+ U', + V: -AZ,+h;L+IB)2, 

I 
with component form 

(18) 

after making field redefinitions similar to those in (1 1) and (1 6). The differences of signs 
of the auxiliary fields between (18) and (13) noted by Siege1 and Gates (1979) are thus 
explained in terms of the different irreps used to achizve the correct on-shell (2,;) 
supergravity multiplet by means of the annihilation rules (14) and (16). This difference 
will be important in our consideration of N = 2 supergravity for which the N = 1 
non-minimal set is appropriate. 

3. Irreps for N = 2 supergravity 

The fundamental irrep with superspin Y = 0 for N = 2 may be obtained by the method 
of induced representations by applying the supersymmetry generators S l i ,  Sz i  to a basis 
state, i = 1 , 2  being the SO(2) labels. The counting of states, denoted by (Jp, d ) ,  where 
Jp is the PoincarB spin and parity and d the SO(2) dimensionality, yields 

CO,', l)+(S", 2)+(1,, 1")+(0,, l)+(OA, 2)+(02, l), 

where the 1 is the scalar representation of S0(2), 2 is the spinor representation, 2 is the 
traceless symmetric two-dimensional representation and 1" is the antisymmetric one- 
dimensional representation. We distinguish between 1 and la ,  even though no such 
distinction really exists in SO(2) because in the on-shell classification of states for 
supergravity the vector fields come in the antisymmetric second-rank tensor represen- 
tation of SO(N).  Whilst this representation reduces to the trivial one for N = 2 it does 
not do so for N > 2. We wish to develop our discussion of irreps and torsion constraints 
for N = 2 in a manner most easily extendable to N > 2, and thus make this distinction 
between 1 and 1" throughout the paper. 

The only irrep with maximum spin 2 has Y = 1 (Taylor 1980, 1981) and the 
corresponding content is 

CO,', 1 ) + ( F i ,  2)+(1,', l " ) + ( l i ,  l")+(lA,  l ) + ( l i ,  l " ) + ( l i ,  2)+(?', 2)+(2,', 1). 

To obtain the correct on-shell assignment (2:, 1) + (Fi, 2) + (l;, 1") from the Y = 1 
irrep we can use the annihilation rules of the previous section. Due to the relatively 
large number of spin-one fields to be removed we use the further annihilation rule 

(19) 1,' - 1; - 0. 

This may be proved by expressing an antisymmetric tensor Aab as 

Aab = iP[aUb]+i&abcdPcVd, 

and find that, to within total divergences, 

Aab2=-(p[aub])2+(p[avb7)2, 

which proves (19). We can now use ( l l ) ,  (14), (16) and (19), and see that at least one 
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Y = 0 irrep is needed to obtain L E ( f )  and L R S ( + ) .  However this does not remove the 
spin-; from Y = 1, so a further Y = 0 irrep is needed. In order simultaneously to 
remove the remaining vectors we need to take this Y = 0 irrep with the opposite 
dimension and with an external antisymmetric pair of SO(2) labels so that the content is 

(0>, la)+($*' ,  2)+(1,4, l ) + ( o A ,  1")+(0,, 2)+(0,, 1") 

The resulting Lagrangian will have, in addition to the spin-2 and -; contributions, the 
abelian field from the Y = 1 multiplet together with exactly the auxiliary field structure 
of de Wit and Van Holten (1979). 

Our above analysis has specified the superspin content of the required irreps as 
being Y = 0 (twice) and Y = 1. There are a number of such irreps, and since moreover 
we do not know the superfields on which the irreps are to be given, we turn to analysing 
torsion constraints at the linearised level to clarify this situation along lines similar to 
that for N = 1. 

4. Linearised torsion constraints 

We start by linearising the geometrical objects in superspace, the vierbein ELM", the 
connection &MAB, the torsion TABc and the curvature, as follows: 

I701 kMA = -+ H ~ ~ ,  &MAB = @MAB,  ?AB ==TAB + T A B ' ,  

where EMA and HMA are the flat and linearised vierbein respectively, @)MAN is the 
linearised connection and ?ABc and TABC the flat and linearised torsion. Our notation 
is M=(m,pU),  i = 1,.  . , , N, a world index, where m and pi are the vector and 
fermionic components, and A = (a, cui) is the respective flat space index. We do not 
need to take curvatures into account since they can be expressed in terms of the other 
geometrical objects (Dragon 1979). The linearised torsion is (Wess 1979, Howe and 
Tucker 1979) 

c 

t21, 

where HAB = EAMHMB, @ABC = EAM@MBC' and [ } is a symmetrisation for a pair of 
spinor indices and an antisymmetrisation otherwise. 

The structure group is chosen to be the Lorentz group. This means that we do not 
need to introduce a connection for the internal symmetry sector and thus it reduces the 
number of independent superfields. We also have supercoordinate invariance in 
superspace. Thus the linearised transformations are respectively 

A 
= D ~ ~ H ~ ; ~  + ? B c D ~ D A  - H B ~ ? D ~ ~  + - I ) " H C " ~ D B ~  + CPFBCI , 

We will also introduce local Weyl invariance later in order to select the auxiliary irreps, 
but we only require the torsion constraints to be invariant under them. 

Since the connection appears without derivatives in (21) it can be solved algebraic- 
ally by putting some components of the torsion equal to zero. There are several sets of 
equivalent torsion constraints of this type which differ by field redefinitions. Since we 
are going to use torsions or combinations of torsions which are independent of the 
connections, we do not need to specify this set of constraints. 
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We then impose the following set of connection-independent torsion constraints: 

Tol+ip-ia = To+i a(l 

- - cB-8 ' -  Cy~-y-T,+iP~-iY'-i - T,+iY-iP-i-NiT,+i.b(cba)Y-P-= 0, (23a)  

(23b) 

(23c) 

( 2 3 4  

(23e) 

(23f 1 
(plus a set of algebraic constraints to be solved for the connection) where - means 
traceless on all the internal indices, T a c i j k  = T a + I P - i  . p - k  , cc stands for complex 
conjugation and Aii + (i c* j ,  traceless) = A(ii, - S i , A k k .  

The constraints (23a)  are algebraic (or conventional) and can be solved for general 
N. They express H , , ~  in terms of H,? 

v - k  - Ta+ip+j - Ta+ip+ja = O ,  
i; . . a = ( ) ,  

fi+lT+i[jk] + CC + ( i  f* Z, traceless) = 0, 

a c 1 p - J  
. I  

T U + l l  = Ta+iik =fi+[pabT+i]ik -CC=fi+[(T+i](jk) +CC=O, 

fi+iT+i~k] + CC = 0, 

Hb" = (1/2N)[i(~~~)p+p-D~o+iHP-i) a 

i ( r  c)a+B-Hby-i 

(')'a')'b)p+PfHp+ia+i 4- (')'"')'b)a-P-Hp-?'-i] 
(24) 

b 

= -[1/2(1 +N)I[D(a+iHp-j)y-j +D(a+iHy-j)P-j 

+ iN (cbaC) V-8 - DL, + iH,lb] + k', -y-{DaHa +? - ( 1 / 2  N )  D, +i 

x [i(Cy,)StS-D~s+iHS-i,a +4 +4HS-:-']}. (25) 
The constraints (236) can also be solved for general N and they introduce the 
prepotentials of the theory V" and vu 

Da+i epPi, (26) H ,@-i = 
, + I  

Ha+: = Do+iVa + i  ( y a C ) , + P - ~ P - i .  (27) 

(28) 

Da+iSa+a - + Da+iSP+a- = 0, D,+,Dp+kSP+a- = 0. (29) 

This solution is invariant under (Sa+@- = ( Y " C ) ~ + , + S ~ ) :  
8ea-i - 1. p+,- SV, = sa, - 4 B p + j S  7 

if Sa satisfies 

We also have supercoordinate invariance in superspace (226) so that the full invariance 
of the theory is 

(30) 
completely away and also the real part of V", so that the 

S V " = S " + t "  6v-i = ~ ~ B + l ~ P + a - + p - i .  

We can now gauge 
solutions (26) and (27) are reduced to 

which is still invariant under 

SVa = -1m Sa. (33) 
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The solution of these two sets of torsion constraints ( 2 3 a ) ,  (23b)  is a simple generalis- 
ation of the N = 1 case (Howe and Tucker 1979). 

At this point we note that while for N = 1 V, has maximum Poincark spin-2 this is 
no longer true for N > 1. In fact, the residual invariance (33 )  leaves just Y = Ion  V, for 
N = 1, but it leaves irreps with Y = 1, 2 for N = 2 so that higher-spin fields are still 
present. We now show how a precise knowledge of the irrep content of V, can be 
obtained. For N = 1 the solution of (29) is 

s a  +p - = 0, + -40 - , 

120- being an unconstrained spinor superfield. It is easily shown, using the algebra of 
D's (Sokatchev 1975), that 

(G + 2P2A)S,+B- = 0, 

(Bab + 2ASab - 26:)s; = 0 

where S,  = S,' +Si, Pas: = 0, (Sab - P,Pb/P2)Slb = 0. Therefore the irrep content of S,  
is 

S ! :  Y=O,G=-2P2; y = $ ,  G==O 

S,': Y = $ , G = O ;  Y = 1, G = -2P', 

and since by (33 )  we can gauge from V, the imaginary part of Sa, the only irrep left in V, 
is Y = 1, that is, the Weyl multiplet. A similar analysis for N = 2 shows that the irrep 
content of S,  is 

7 7  

S , :  I/ Y = 0 , G = - 4 P 2 , . r = 0 ;  

S,' : Y = 1, G = -2P2, r 2  = 1; 

y =$, G = -2p', r -  = 1 

Y = l , G = - 4 P  , ~ = 0 ,  2 

( r  = 1/P2Di,i,Z?D2 being the third Casimir operator of the N = 2 algebra (Taylor 1980, 
1981)) leaving in V, a multitude of irreps so that V, must be further constrained. 

We still have to fix the Lorentz gauge in superspace (22a). It can be used to gauge 
away some components of Ha,?+', leaving 

Ha+:+i = 6,+@'(SjiA +&) + (u ,b ) ,+@+f i ;b .  i34) 

The next constraint (23c )  is mixed in the sense that it involves algebraic as well as 
differential constraints. We can rewrite it in the form (Cyb)a+P-fa+ip-ia = 0 and take 
the irreducible pieces. The trace and symmetric part (on the vector indices) can be 
solved algebraically for fiGb and partially for ai. Then (34) can be written as 

Ha+:+' = S,+p+(H,i +dij) +&&+P'Dii~"ysDiV, - ~ i ( u , b ) a + P + ~ i i j a y S D i V h ,  (35) 

where Hij = -fl.j = H;, A, = Aji =A$. The antisymmetric part of the constraint gives 
a differential equation for V, whose solution for N = 2 is 

V, = Djiy,y5DiV, ( 3 6 )  

where V is a pre-prepotential. An analysis of the irrep content of V, shows that V$ can 
be gauged away and V,' has Y = 1, G = r = 0 (singlet) which is the Weyl multiplet for 
N = 2 (de Wit et a1 1980a, b, de Wit and van Holten 1979). 
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5. Auxiliary irreps 

Now we turn to the constraints which give rise to the auxiliary irreps. They can be best 
understood as partial gauge choices for the Weyl transformation in superspace (Gates et 
a1 1980). We assume that only the torsion constraints are invariant under these 
transformations. The linearised form is 

where A is complex, and for N = 2, fij = inij + Aij with fiij = $fji =it@, Aij = -A.. 18 = A? [l 

The invariance of the algebraic constraints can be used to define the Weyl trans- 
formations on the connection and on the other components of the vierbein. 

We can then write down the Weyl transformation for the components of the torsion 
which were not used till flow, and count the irreps which are generated when the 
constraints are imposed. The situation is quite different from N = 1 (Gates eta1 1980), 
since in that case there are only two possible partial gauge choices which give rise to the 
minimal and non-minimal set of auxiliary fields. For N = 2 there is a large range of 
partial gauge choices which do not seem to be equivalent among each other (regarding 
the irrep content), and for which we do not even know whether a solution for the 
corresponding constraints exist. In trying to obtain the minimal set of auxiliary fields 
(de Wit and van Holden 1979) we notice that a slight variation of the last constraint 
gives a non-minimal set. 

The invariance of the constraints (23d)  requires that 

D,+iA = 0, (38a)  

D ~ j ( A * + A ) + ~ i i j s D i ( A * - A )  =0, (386) 

&abDj&l = 0. ( 3 8 4  

Da+iGjk +Da+@ki +Da+k@ij-%si,Dm+&lk +$kD,+l~~j+SjkD,+,~li> = O ,  ( 3 8 ~ )  

Equations (38a)  and (386) tell us that A is chiral with F = 4P2 (F = DlD1D2D2 is an 
operator which reverses the chirality on chiral irreps and can be used to impose a reality 
condition on such irregs. Its eigenvalues are F = *4P2 (Taylor 1980,1981)); equation 
(38c) requires that Mij has both G = -4P2, and -2P2, but since it is real the only 
solution is = 0. Finally equation (38d)  implies that Aij carries the irreps Y = G = 0, 
T~ = 4, T = 0. The solution of the corresponding constraints is 

A = ~D~+,Ds-iV8C6-+ T, D,+T = 0, (39a) 

T = @+iD+jD+,D+jV + S, D,+S =D,Dl,9 = 0, (396) 
N 

* 
Ajj = 0, 

D i a a b ~ j ~ k l  = 0. 

In (39a)  T is a compensating chiral superfield which is further constrained with solution 
given by (396) (unlike N = 1 when it is chiral but otherwise unconstrained). Then the 
solution (396) involves the true compensatingsuperfield for N = 2. The conditions on S 
show that it carries the irrep Y = 7 = 0, F = 4P2, that is, the vector-gauge multiplet (de 
Wit and van Holten 1979). Equation (39d)  implies that Hij carries the irreps Y = G = 0, 
7 = 4  and 7=0. At this stage we have fixed all Weyl parameters and we have a 
non-minimal formulation with 56 + 56 fields. 

2 
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The last two constraints (23e) and (23f) impose further conditions on the Weyl 
parameter Aii : 

Equation (40a) removes Y = G = 0, T~ = 4, while (40b) removes Y = 1, G = 7 = 0 (the 
tensor-gauge multiplet (de Wit and van Holden)) giving rise to the minimal and a 
non-minimal set of auxiliary fields with 40+40 and 48+48 fields respectively. The 
corresponding constraints on Hij are then 

N 

DjDjHkl= 0, (410 I 

bjD;Hkl= 0. (41bi  

These formulations depend on a real scalar superfield V, a scalar superfield S 
(constrained by (39b)), both being scalars under SO(2) and a real scalar superfield Hij in 
the antisymmetric representation of SO(2) (constrained by (39d), (41a) or (41b)). 
Unlike the non-minimal N = 1 formulation in superspace (Siege1 and Gates 1979, 
Bedding et a1 1979, Gates 1981). we do not have a compensating spinor superfield. 
Also the structure of the constraints is similar to the minimal N = 1 case in the sense that 
upon reduction we obtain the constraints for the minimal set. In fact the reduction does 
not distinguish between the minimal and non-minimal N = 2 cases. 

6. N = 2 linearised superfield Lagrangians 

Our analysis of torsion constraints of $8 4 and 5 has somewhat narrowed down the 
choice of irreps to three possible choices, all containing the minimal set described in $ 3 .  
We showed that the Y = 1 Weyl irrep containing the graviton and gravitino is in the 
scalar superfield V and that there are auxiliary Y = 0 irreps in S and HI,. The irrep in S 
has F = 4P2, whilst the irreps in H,, distinguish the three possibilities from each other. 
In both the 48 +48 or 56 + 56 scheme H,, has the = 4, Y = 0 irrep as well as the 
Y = G = T = 0 irrep in the latter case. 

The spin-SO(2) content of the Y = 0, T~ = 4 irrep is obtained from the Y = G = T = 
0 irrep by direct product of the latter with the two-dimensional symmetric traceless 
representation of S0(2),  to give for the former 

(0~,2)+(0;,2)+(0p, 2)+(0pi, 2)+(0P, l ) + ( O p ,  l a )+ ( l i ,  2)+(i", 2)+1:", 2).  

The case of 48 + 48 can easily be disposed of by the observation that there is a single 
unwanted spin-4 S0(2)-doublet which remains on-shell. The case of 56 + 56 is more 
subtle, but the crucial difficulty arises from the pair of physical S0(2)-doublet scalars in 
the T* = 4 irrep. There is only one S0(2)-doublet vector, and that is in the Weyl 
multiplet, so at least one of those scalars will persist on-shell. We are left therefore 
solely with the minimal 40 + 40 scheme. 

We can now rapidly write down the linearised superfield Lagrangian which cor- 
responds to this situation. It is necessary to take the projectors (Taylor 1980,1981) on 
to the appropriate irreps in V, S and Hij (which solves the remaining torsion con- 
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straints), 

where 

The superfield Lagrangian is thus finally 

L = d46 (VT1 v - Sn2S - Hijn3Hij). (44) I 
We may write down the component expansions in basis functions for the corresponding 
superfields. For nl V we first expand V in products of basis functions eo, U,, w, in each 
of and &12 respectively, and then project onto the J = P" subspace by means of the 
projector (1/4P4)(3P4 +J). After a little algebra the resultant superfield is 

with PaAa = PaB all .. = PaAaij = Pahab = = blab] = 0. For r 2 S  we may combine the 
G = +4P2 irrep constructed from products of (e+, U,+, U + )  basis functions and its 
complex conjugate and project out the F = +4P2 part, giving 

n2S = [(2P2)-'e+e+ + 2w+w+ + CC]A 

+ i[(2P-'e+e+ - 2w+w+ + c c ] ~  + (2~')-'(e+w+ + w+e+ + c c ) ~  
4- bijBij -+ (4P2)-1EiicTabU~(A)abij 

+ (P~)-'{[(~+E"" - - 2 w - ( ~ - i ~ ) ~ + ] @ , + ~  +cc}, (46) 

Finally n3Hii is constructed by projecting the G = 0, A = 2 superfieid constructed from 
products of (e+, U,+, U + )  and (e-, U,--, U - )  basis functions onto the subspace with 
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2 e + e - + 4 P  w-w,-cc 
LI iPy5 14 

d,, =i(4P ) ( 
The field redefinitions are accomplished exactly as described in § 3, where the first and 
second Y = 0 multiplets are r 2 S  and r3Hi j  as expressed above. 

The superfield Lagrangian (44) may be written, after recombination, as 

According to our discussion of 002 and 3, the first three terms are the linearised 
Einstein, Rarita-Schwinger and Maxwell Lagrangian, whilst all the remainder are 
purely auxiliary, giving the auxiliary fields of de Wit and van Holten (1979). 

7. Concluding remarks 

Our superspace analysis is not directly comparable with other formulations (Castellani 
eta1 1980, Stelle and West 1978, Wess 1979) which are based on an SU(2) group (either 
gauged in superspace or not), since the defining conditions for the irreps depend 
strongly on which group is being used. This explains why some of our differential 
torsion constraints differ from those presented in Stelle and West (1978) although the 
irrep content is the same. 

We also meet a different situation from N = 1 where the breaking of the super-Weyl 
invariance leads us to non-minimal formulations for which there do not exist Poincare 
Lagrangians. However, because of the great number of super-Weyl partial gauge 
choices, we cannot conclude that a non-minimal formulation does not exist. 

We have tried to divide our torsion constraints into those expected to be applicable 
to higher N and those special to N = 2. We may attempt to extend the latter, as well as 
the former, to higher N. However, more recent work (Rivelles and Taylor 1981) 
indicates the need for the presence of central charges in order to go off-shell for N 3 3 
supergravities. Because of this, considerable changes of constraints may well be 
necessary in order to go beyond N = 2. 

We must recognise that our recent results on the need for spin-reducing central 
charges for higher N (Rivelles and Taylor 1981) indicate that both classical and quantal 
features of the N = 2 case will be modified considerably even at N = 3. We propose 
therefore to investigate this and higher-N cases more fully by the techniques we have 
used successfully for N = 2. 
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